Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles.

نویسندگان

  • J-H Juang
  • J-J Wang
  • C-R Shen
  • C-H Kuo
  • Y-W Chien
  • H-Y Kuo
  • Z-T Tsai
  • T-C Yen
چکیده

Although only 10% of islet recipients maintain insulin independence, 80% of them are C-peptide positive at 5 years after transplantation. To better understand the fate of transplanted islets, a magnetic resonance imaging (MRI) technique has been used to detect Feridex-labeled islet grafts in rodents. In this study, we used a novel MRI contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles, to monitor mouse islet grafts. Male inbred C57BL/6 mice were used as donors and recipients of islet transplantation. The islet cytotoxicity was evaluated by fluorescein diacetate and propidium iodide staining for RAW cells incubated with CSPIO. After being incubated overnight with and without CSPIO (10 mg/mL), 300 islets were transplanted under the left kidney capsule of each mouse. After transplantation, 3.0-Tesla MRI of the recipients was performed biweekly until 19 weeks. At the end of study, the islet graft was removed for insulin and Prussian blue staining. The cell death rates in RAW cells did not increase with increasing CSPIO concentrations or incubation time. The grafts of CSPIO-labeled islets were visualized on MRI scans as distinct hypointense spots homogeneously located at the upper pole of left kidney. Their MRI signal was 30%-50% that of control islets and was maintained throughout the follow-up period. At 18 weeks, the histology of CSPIO-labeled islet graft revealed the insulin- and iron-stained areas to be almost identical. Our results indicate that isolated mouse islets labeled with CSPIO nanoparticles can be effectively and safely imaged by using MRI as long as 18 weeks after transplantation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Resonance Imaging of Mouse Islet Grafts Labeled with Novel Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles

OBJECT To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR) imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles. MATERIALS AND METHODS After being incubated with and without CSPIO (10 µg/ml), C57BL/6 mouse islets were examined under transmission el...

متن کامل

In vivo Tracking of Mesenchymal Stem Cells Labeled with a Novel Chitosan-coated Superparamagnetic Iron Oxide Nanoparticles using 3.0T MRI

This study aimed to characterize and MRI track the mesenchymal stem cells labeled with chitosan-coated superparamagnetic iron oxide (Chitosan-SPIO). Chitosan-SPIO was synthesized from a mixture of FeCl(2) and FeCl(3). The human bone marrow derived mesenchymal stem cells (hBM-MSC) were labeled with 50 microg Fe/mL chitosan-SPIO and Resovist. The labeling efficiency was assessed by iron content, ...

متن کامل

Multilayered nanocoatings incorporating superparamagnetic nanoparticles for tracking of pancreatic islet transplants with magnetic resonance imaging.

A novel strategy for delivering functionalised superparamagnetic iron oxide nanoparticles to the outer surface of pancreatic islet grafts, using chemically modified polymeric nanolayers, has been developed for tracking of engrafted pancreatic islets by magnetic resonance imaging.

متن کامل

Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla.

We have developed a magnetic resonance imaging (MRI) technique for imaging Feridex (superparamagnetic iron oxide [SPIO])-labeled islets of Langerhans using a standard clinical 1.5-Tesla (T) scanner and employing steady-state acquisition imaging sequence (3DFIESTA). Both porcine and rat islets were labeled with SPIO by a transfection technique using a combination of poly-l-lysine and electropora...

متن کامل

Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging

Based on their versatile, biocompatible properties, superparamagnetic iron oxide (SPIO) or ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are utilized for detecting and tracing cells or tumors in vivo. Here, we developed an innoxious and concise synthesis approach for a novel B-cell lymphoma (Bcl)-2 monoclonal antibody-functionalized USPIO nanoparticle coated with an amphiphilic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Transplantation proceedings

دوره 42 6  شماره 

صفحات  -

تاریخ انتشار 2010